Step of Proof: order_split
12,41
postcript
pdf
Inference at
*
1
2
1
I
of proof for Lemma
order
split
:
1.
T
: Type
2.
R
:
T
T
3.
a
:
T
.
R
(
a
,
a
)
4.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
(
x
=
y
)
6.
x
,
y
:
T
. Dec(
x
=
y
)
7.
a
:
T
8.
b
:
T
9.
R
(
a
,
b
)
10.
(
a
=
b
)
R
(
b
,
a
)
latex
by ((((D 0)
CollapseTHENM (FHyp 5 [9;-1]))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
A
,
P
Q
,
x
(
s1
,
s2
)
,
False
,
x
:
A
.
B
(
x
)
,
Lemmas
not
wf
,
false
wf
origin